3.2.1 \(\int \frac {1}{x^3 \sqrt {a+b x+c x^2} (d-f x^2)} \, dx\) [101]

Optimal. Leaf size=376 \[ -\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{5/2} d}-\frac {f \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}} \]

[Out]

-1/8*(-4*a*c+3*b^2)*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/a^(5/2)/d-f*arctanh(1/2*(b*x+2*a)/a^(1/
2)/(c*x^2+b*x+a)^(1/2))/d^2/a^(1/2)-1/2*(c*x^2+b*x+a)^(1/2)/a/d/x^2+3/4*b*(c*x^2+b*x+a)^(1/2)/a^2/d/x-1/2*f^(3
/2)*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/
2))^(1/2))/d^2/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2)+1/2*f^(3/2)*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)
+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))/d^2/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.49, antiderivative size = 376, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {6857, 758, 820, 738, 212, 1047} \begin {gather*} -\frac {\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{5/2} d}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d^2 \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d^2 \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}-\frac {f \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

-1/2*Sqrt[a + b*x + c*x^2]/(a*d*x^2) + (3*b*Sqrt[a + b*x + c*x^2])/(4*a^2*d*x) - ((3*b^2 - 4*a*c)*ArcTanh[(2*a
 + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(8*a^(5/2)*d) - (f*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c
*x^2])])/(Sqrt[a]*d^2) - (f^(3/2)*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d
- b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d^2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (f^(3/2)*Arc
Tanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b
*x + c*x^2])])/(2*d^2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 758

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)),
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x]
 /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e
, 0] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ
[p]) || ILtQ[Simplify[m + 2*p + 3], 0])

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx &=\int \left (\frac {1}{d x^3 \sqrt {a+b x+c x^2}}+\frac {f}{d^2 x \sqrt {a+b x+c x^2}}+\frac {f^2 x}{d^2 \sqrt {a+b x+c x^2} \left (d-f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {1}{x^3 \sqrt {a+b x+c x^2}} \, dx}{d}+\frac {f \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{d^2}+\frac {f^2 \int \frac {x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{d^2}\\ &=-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}-\frac {\int \frac {\frac {3 b}{2}+c x}{x^2 \sqrt {a+b x+c x^2}} \, dx}{2 a d}-\frac {(2 f) \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{d^2}+\frac {f^2 \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d^2}+\frac {f^2 \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d^2}\\ &=-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {f \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}+\frac {\left (3 b^2-4 a c\right ) \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{8 a^2 d}-\frac {f^2 \text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d^2}-\frac {f^2 \text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d^2}\\ &=-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {f \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}}-\frac {\left (3 b^2-4 a c\right ) \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{4 a^2 d}\\ &=-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {\left (3 b^2-4 a c\right ) \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{5/2} d}-\frac {f \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {f^{3/2} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.75, size = 241, normalized size = 0.64 \begin {gather*} \frac {\frac {d (-2 a+3 b x) \sqrt {a+x (b+c x)}}{a^2 x^2}-\frac {\left (3 b^2 d-4 a c d+8 a^2 f\right ) \tanh ^{-1}\left (\frac {-\sqrt {c} x+\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )}{a^{5/2}}-2 f^2 \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {a \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-\log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-b \sqrt {c} d+2 c d \text {$\#$1}+a f \text {$\#$1}-f \text {$\#$1}^3}\&\right ]}{4 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

((d*(-2*a + 3*b*x)*Sqrt[a + x*(b + c*x)])/(a^2*x^2) - ((3*b^2*d - 4*a*c*d + 8*a^2*f)*ArcTanh[(-(Sqrt[c]*x) + S
qrt[a + x*(b + c*x)])/Sqrt[a]])/a^(5/2) - 2*f^2*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*
#1^2 - f*#1^4 & , (a*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2]
 - #1]*#1^2)/(-(b*Sqrt[c]*d) + 2*c*d*#1 + a*f*#1 - f*#1^3) & ])/(4*d^2)

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 516, normalized size = 1.37

method result size
risch \(-\frac {\sqrt {c \,x^{2}+b x +a}\, \left (-3 b x +2 a \right )}{4 a^{2} d \,x^{2}}-\frac {f \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{d^{2} \sqrt {a}}+\frac {\ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right ) c}{2 d \,a^{\frac {3}{2}}}-\frac {3 \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right ) b^{2}}{8 d \,a^{\frac {5}{2}}}+\frac {f \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 d^{2} \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}+\frac {f \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 d^{2} \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}\) \(503\)
default \(\frac {-\frac {\sqrt {c \,x^{2}+b x +a}}{2 a \,x^{2}}-\frac {3 b \left (-\frac {\sqrt {c \,x^{2}+b x +a}}{a x}+\frac {b \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{2 a^{\frac {3}{2}}}\right )}{4 a}+\frac {c \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{2 a^{\frac {3}{2}}}}{d}+\frac {f \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 d^{2} \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {f \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{d^{2} \sqrt {a}}+\frac {f \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 d^{2} \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\) \(516\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/a/x^2*(c*x^2+b*x+a)^(1/2)-3/4*b/a*(-1/a/x*(c*x^2+b*x+a)^(1/2)+1/2*b/a^(3/2)*ln((2*a+b*x+2*a^(1/2)*(c
*x^2+b*x+a)^(1/2))/x))+1/2*c/a^(3/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x))+1/2/d^2*f/(1/f*(-b*(d*f)^(
1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*
(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^
(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))-f/d^2/a^(1/2)*ln((2*a+b*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x)+1/2/d^2*
f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+
2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^
(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

-integrate(1/(sqrt(c*x^2 + b*x + a)*(f*x^2 - d)*x^3), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{- d x^{3} \sqrt {a + b x + c x^{2}} + f x^{5} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(1/(-d*x**3*sqrt(a + b*x + c*x**2) + f*x**5*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument ValueEvaluation time:
 0.8Done

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^3\,\left (d-f\,x^2\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(d - f*x^2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/(x^3*(d - f*x^2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________